Softgel Technology as a Lipid-Based Delivery Tool for Bioavailability Enhancement

Irena McGuffy, RPh, MS
Group Leader, Softgel Formulation
03.29.11
Presentation Outline

- Strategies for Oral Delivery and Bioavailability Enhancement of Poorly Soluble Drugs
 - Drug Substance Modification
 - Drug Formulation Technologies

- Softgel Technology for Lipid-Based Oral Drug Delivery Systems - Current Approaches

- Softgel Technology for Lipid-Based Oral Drug Delivery Systems - Future Approaches

- Summary

- Q&A
NCE Outlook– Poorly Water-Soluble Drugs

New Chemical Entities

<table>
<thead>
<tr>
<th>Solubility</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

- **BCS Class I** (~5%)
- **BCS Class II** (~70%)
- **BCS Class III** (~5%)
- **BCS Class IV** (~20%)

L. Benet, Predicting Drug Disposition by Application of BDDCS, AAPS, 2008
Strategies For Oral Delivery of Poorly Soluble Drugs

- **Depend on unique properties of every drug substance**
 - Physical – physical state (melting point); crystal form (polymorph); particle size distribution and surface area; physical stability (hygroscopicity)
 - Chemical – salt form; molecular weight; solubility (aqueous, pH solubility profile, intrinsic dissolution); chemical stability; compatibility with excipients
 - Biological – mechanism of absorption (passive diffusion or active transport); site of absorption; first-pass metabolism; efflux; enterohepatic circulation; drug dosing requirements
Strategies For Oral Delivery of Poorly Soluble Drugs

- **Drug Substance Modification**
 - Salts
 - Crystal Forms (polymorphs)
 - Amorphous Form
 - Hydrates or Solvates
 - Prodrugs
 - Cocrystals
Strategies For Oral Delivery of Poorly Soluble Drugs

- **Formulation Strategies**
 - Lipid-based drug delivery systems
 - Nanocrystals
 - Solid solutions/dispersions
 - Solid-lipid nanoparticles
 - Inclusion complexes (cyclodextrins), etc.

- **Dosage Form Options**
 - Softgel capsules (gelatin or plant-based)
 - Hardshell capsules (gelatin, HPMC, plant-based; liquid or powder filled)
 - Oral solutions or suspensions
 - Tablets
Softgel Technology for Lipid-Based Drug Delivery Systems – Current Approaches

Lipophilic excipients and resulting formulations are most often liquid or semi-solid in nature

Proven dosage form for lipid-based formulation

- Good developability (compatible with a wide range of excipients and formulations)
- Good manufacturability (number of NDA approved products and unit volumes)
- Uncompromised in-vivo performance (fast release of fill formulation)
Lipid-Based Drug Delivery Systems

Classification:

<table>
<thead>
<tr>
<th></th>
<th>Type I</th>
<th>Type II</th>
<th>Type IIIA</th>
<th>Type IIIB</th>
<th>Type IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triglycerides or mixed</td>
<td>100</td>
<td>40-80</td>
<td>40-80</td>
<td><20</td>
<td>N/A</td>
</tr>
<tr>
<td>glycerides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactants (HLB<12)</td>
<td>N/A</td>
<td>20-60</td>
<td>N/A</td>
<td>N/A</td>
<td>0-20</td>
</tr>
<tr>
<td>Surfactants (HLB>12)</td>
<td>N/A</td>
<td>N/A</td>
<td>20-40</td>
<td>20-50</td>
<td>30-80</td>
</tr>
<tr>
<td>Hydrophilic cosolvents</td>
<td>N/A</td>
<td>N/A</td>
<td>0-40</td>
<td>20-50</td>
<td>0-50</td>
</tr>
<tr>
<td>In vivo behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance upon dispersion</td>
<td>Non-dispersing</td>
<td>Turbid</td>
<td>Clear or almost</td>
<td>Clear</td>
<td>Clear</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(droplet size 250-2,000)</td>
<td>clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavior upon dispersion</td>
<td>Poor solvent capacity</td>
<td>Solvent capacity unaffected</td>
<td>Possible loss of solvent capacity</td>
<td>Likely loss of solvent capacity</td>
<td>Loss of solvent capacity</td>
</tr>
<tr>
<td>Digestibility</td>
<td>Crucial</td>
<td>Not crucial, likely</td>
<td>Less likely</td>
<td>Not likely</td>
<td>Not likely</td>
</tr>
</tbody>
</table>

C.W. Pouton, 2006
Lipid-Based Drug Delivery Systems Formulation

“Begin With The End In Mind”

- Achieving drug solubility in the formulation pre-administration
- Maintaining drug solubility in the formulation (or the formulation’s digestion products) post-administration

Liquid Technologies

- Lipid 82%
- Hydrophilic 18%
Lipid-Based Formulations for Solubility and Bioavailability Enhancement
Suspension Formulations
Example: Prometrium® Softgels 100, 200 mg (progesterone)

API Physical-Chemical Properties
- Molecular weight 314.47
- Practically insoluble in water
- Soluble in alcohol, acetone and dioxane; sparingly soluble in vegetable oils

Finished Product:
- Micronized drug suspension in peanut oil, lecithin
- Tmax ~3 hours
- Absolute bioavailability unknown, estimated <10% (even after micronization, dispersion in LCT)
- Food effect (increased BA)
- Some patient-to-patient variability

Data collected from Drugs@FDA, NDA 019781, patient package insert
Lipid-Based Solution Formulations
Example: Avodart® Softgels 0.5 mg (dutasteride)

API Physical-Chemical Properties
- Molecular weight 528.5
- Hydrophobic (log P = 5.09)
- Solubility in water 0.038 ng/mL
- Soluble in ethanol (44 mg/mL), methanol (64 mg/mL), PEG 400 (3 mg/mL)

Finished Product*:
- Drug solution in mixture of mono-, diglycerides of caprylic and capric acid
- Tmax = 1-4 hours
- Absolute bioavailability ~60%
- Slight food effect
- Some patient-to-patient variability
- Better bioavailability than PEG 400 formulation

*Data collected from Drugs@FDA, NDA 021319, patient package insert
Self-Emulsifying Drug Delivery Systems

Formulation of Self-Emulsifying Drug Delivery Systems

- Lipid-Based “Preconcentrate” of Solubilized Drug
- Typical Composition
 - Lipid excipients
 - Surfactants (hydrophilic, high HLB)
 - Co-surfactants (lipophilic, low HLB)
 - Co-solvents (ethanol)

Desired Characteristics Upon Dilution With the G.I. Fluids

- Spontaneous Formation of Micro/Nanoemulsion
- Drug Stays in Solution and Does Not Precipitate
Softgels for Self-Emulsifying Lipid-Based Formulations Undergoing Lipolysis

Lipid formulation containing dissolved drug

Lipid formulation spontaneously emulsifies in gastric juice

Nano/Microemulsion (<100nm) disperses in stomach

Rapid process

Softgel Rupture: 5 to 10 minutes
Softgels for Self-Emulsifying Lipid-Based Formulations Undergoing Lipolysis

- Multilamellar vesicles
- Unilamellar vesicles
- Mixed micelles
- Lipase
- Bile salts
- Colipase

Lipolysing nano/microemulsion and vesicle droplets
Self-Emulsifying Drug Delivery Systems
Example: Cyclosporin A (the Neoral® Story)

API Physical-Chemical Properties
- High molecular weight (1202.63)
- Hydrophobic
- Poorly soluble in G.I. fluids

API Pharmacokinetic Properties
- Poor and variable absorption

Initially Introduced as a Lipid-based Formulation in a Softgel - Sandimmune®

Reformulated as a Microemulsion Preconcentrate in a Softgel - Neoral®
- Rapid gastric dispersion due to self-emulsifying properties
- Maintain drug in solution using a solvent system which prevents precipitation
- High drug concentration at the site of absorption
Pharmacokinetic Profiles for Sandimmune® and Neoral®

12 Fasting Human Volunteers; 150mg Dose
Effect of Food Intake on the Absorption of Sandimmune® and Neoral®

Neoral® is less affected by food intake
Lipid-based Formulations for Permeability and Bioavailability Enhancement

Permeability Enhancement

- Passive transport through enterocytes
- Passive transport around enterocytes (tight junctions)
- Enterocyte-based active transport and metabolic processes (P-gp, CYP3A4, lipoproteins)

Bioavailability Enhancement – Alternate Absorption Routes

- Lymphatic transport
Saquinavir (a P-gp substrate) oral bioavailability was significantly increased when co-administered with Cremophor EL

Average plasma concentration-time curves of a single dose of saquinavir 600 mg with co-administration of Cremophor EL® (○ 0 mg; ▲ 100 mg; ■ 1000 mg; ● 5000 mg)
Softgel Technology as a Delivery Tool for Lipid-Based Delivery Systems

GELATIN + Plasticizer + water

Lipophilic, Hydrophilic, or Mixed Vehicle

Solution, Suspension or highly viscous formula of Drug

Colors, Opacifiers, Flavors
Softgel Technology as a Delivery Tool

Good NCE Candidates:
- BCS class II and IV drugs
- Highly potent, low dose
- Oxygen sensitive
- Light sensitive
- Liquid or low melting point

Other Advantages:
- Proven technology
- Robust dosage form (no brittleness or leaking)
- Appropriate for low to high viscosity formulations (up to ~15,000 cps)
- Fill formulation temperature up to ~40°C
- Minimal to no scale-up issues
Modified Release Softgels Using Vegicaps® Capsule Technology

- Semi-solid/solid lipid fill matrix for modified drug release of poorly soluble and water-soluble drugs

- Compounds that exhibit a short half-life/frequent dosing or high peak blood levels/unacceptable side effects
Softgel Technology for Lipid-based Drug Delivery Systems – Future Approaches

Modified Release Softgels Using Vegicaps® Capsule Technology

Typical Composition of Gel/Shell

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP starch/carrageenan blend</td>
</tr>
<tr>
<td>Plasticizer</td>
</tr>
<tr>
<td>Water *</td>
</tr>
</tbody>
</table>

* Includes buffer salt
Vegicaps® Capsule Technology

Vegicaps® capsule shell polymer system undergoes thermal transitions at higher temperatures than traditional, gelatin-shell systems. This allows encapsulation of lipid fills at high temperatures that are semi-solid or solid-like at room temperature.

<table>
<thead>
<tr>
<th>Formula type</th>
<th>Base vehicle</th>
<th>Formulation characteristics at RT</th>
<th>Drug loading</th>
<th>Physical state of the formulation at 20°C</th>
<th>Physical state of the formulation at 40°C</th>
<th>Physical state of the formulation at 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sucrose acetate</td>
<td>Lipophilic, extremely viscous fluid</td>
<td>40-50%</td>
<td>Extremely viscous fluid</td>
<td>Extremely viscous fluid</td>
<td>Low viscosity fluid</td>
</tr>
<tr>
<td></td>
<td>isobutyrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PEG 6000</td>
<td>Hydrophilic, solid</td>
<td>35-43%</td>
<td>Solid</td>
<td>Solid</td>
<td>Viscous fluid</td>
</tr>
</tbody>
</table>
Vegicaps® Capsule Technology: Modified Drug Release Example

Fill Formulation:

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
</tr>
<tr>
<td>Mineral Oil</td>
</tr>
<tr>
<td>Paraffin Wax</td>
</tr>
<tr>
<td>Lipophilic Emulsifier</td>
</tr>
<tr>
<td>Hydrophilic Emulsifier</td>
</tr>
</tbody>
</table>
Vegicaps® Capsule Technology: Modified Drug Release Example

Comparison of Modified Release & Immediate Release Capsules: Single Dose in 8 Subjects

Modified Release Formulation Eliminates Drug Serum Spikes
Film Coated Softgels for the Targeted Delivery of Poorly Soluble, Poorly Permeable Drugs

- Post-gastric (targeted) drug delivery
- Protection of acid-labile drugs from gastric fluids
- Reduced local gastric side effects
- Potential for enhanced drug absorption
 - Rapid release of fill contents at targeted site of delivery following dissolution of film coat
 - High local concentrations of API and permeation enhancers
Softgel Film-coating Technology: Targeted Drug Release Example

Fill Formulation

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
</tr>
<tr>
<td>Mono/Diglycerides of Capryl/Capric Acid</td>
</tr>
<tr>
<td>Caprylocapryl Macrogol Glycerides</td>
</tr>
<tr>
<td>Polysorbate 80</td>
</tr>
</tbody>
</table>
Softgel Film-coating Technology: Targeted Drug Release Example

Film Coat Formulation

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eudragit® L30D 55 Dispersion</td>
</tr>
<tr>
<td>PEG 400</td>
</tr>
<tr>
<td>Talc</td>
</tr>
<tr>
<td>Simethicone Emulsion</td>
</tr>
<tr>
<td>Purified Water</td>
</tr>
</tbody>
</table>

12% Weight Gain
Softgel Film-coating Technology: Targeted Drug Release Example

In-vitro Disintegration (min)

<table>
<thead>
<tr>
<th>USP <701></th>
<th>T=0</th>
<th>T=3 mon</th>
<th>T=6 mon</th>
<th>T=9 mon</th>
<th>T=12 mon</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGF, n=6</td>
<td>No evidence of disintegration</td>
</tr>
</tbody>
</table>

SGF

SIF
In Summary...

• The bioavailability of poorly soluble drugs can often be enhanced from lipid-based formulations filled into softgels
• Self-emulsifying lipid-based formulations can enhance bioavailability and minimize absorption variability with little or no “food effect”
• Lipid-based solution or suspension formulations which are digested in-vivo by lipolysis can provide significantly improved bioavailability
• Bioavailability enhancement can be achieved by enzyme and/or efflux inhibition, modification of absorption route (lymphatic transport)
• Future approaches include modified delivery for improved safety and/or efficacy.
2010 AAPS Posters

- Manufacture of Phosal® MCT Softgels and Phosal® 50 PG Softgels and Stability Evaluation at Accelerated Conditions
- Effect of Kollicoat Protect Top-coat on Long-Term Physical Stability of Enteric Coated Softgels
- Gelatin-free Softgels: Compatibility Studies of SEDDS and SMEDDS Capsule Fill Formulations

Cremophor is a registered trademark of BASF AG; Prometrium is a registered trademark of Solvay Pharmaceuticals, Inc.; Avodart is a registered trademark of Glaxosmithkline LLC; Neoral and Sandimmune are registered trademarks of Novartis AG; Vegicaps is a registered trademark of Catalent Pharma Solutions; Eudragit is a registered trademark of Evonik Roehm GmbH.
Softgel Technology for Lipid-based Drug Delivery Systems

Acknowledgements:

Dr. Jeff Browne
Technical Director, Business Development, Pharma Softgel
Catalent Pharma Solutions
St. Petersburg, FL

Stephen Tindal
Director, Softgel Formulation and Operations
Catalent Pharma Solutions
Somerset, NJ
discover more.

CATALENT PHARMA SOLUTIONS
14 SCHOOLHOUSE ROAD
SOMERSET, NJ 08873
+ 1 866 720 3148
www.catalent.com

more products. better treatments. reliably supplied."