Specialized Analytical and Formulation Tools for the Successful & Timely Development of Lipid-based Drug Delivery Systems
Presentation Outline

- The Need to Integrate Formulation & Analytical Activities
- The Important Role Lipid-based Drug Delivery Systems (LBDDS) Play in the Bioavailability Enhancement of Challenging Drugs
- The Basic Elements of a Successful LBDDS Development Program
- Preformulation Studies and Analytical Tools for the Rationale Selection of Lipid Excipients
- Examples: Impact of Selecting the Right Lipid Excipients for Desired Formulation Performance
- Formulation Development Studies and Analytical Tools for LBDDS
- Examples: Effective Development of LBDDS Formulations for Enhanced Bioavailability
The Need to Integrate Formulation and Analytical Activities

• The patient is waiting – more, faster, better
• Demand for medicines increasing – 2010 sales of 600B Euro
Time to Market is Critical...

- Top 200 drug products generated $133.2B in sales in 2008, or an average annual sales of ~$666M per product

- Within 6 months of patent expiry, a brand may lose more than 80% of market share

- Because patent life starts at filing, any reduction in the time-to-market will increase revenues over the lifetime of the drug product
 - 6 months improvement in getting a drug to market could equate to $200M in additional revenues over the product’s life

- Expediting the early stages of drug development to verify a drug candidate’s drugability as well as establishing POC for drug delivery technology

The Important Role Lipid-based Drug Delivery Systems (LBDDS) Play in the Bioavailability Enhancement of Challenging Drugs
Outlook For The Future

New Chemical Entities

<table>
<thead>
<tr>
<th>Solubility</th>
<th>Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

- BCS Class I: ~5%
- BCS Class II: ~70%
- BCS Class III: ~5%
- BCS Class IV: ~20%

L. Benet, EDAN, Leuven, BE, March 18-20, 2007
Why The Interest in Lipid-Based Formulations?

- NCE’s with low solubility and/or poor permeability often result in the following:
 - Sub-therapeutic levels due to limited absorption
 - Greater subject-to-subject variability in absorption
 - Significant food effects potentially resulting in altered bioavailability
 - More difficult, costly and lengthy development programs

- Lipid-based formulations represent a viable option for the oral delivery of poorly water soluble, poorly permeable drugs
How Do LBDDS Enhance Bioavailability?

- Increase solubilization
- Reduce the impact of various biological factors
- Affect membrane permeability
- Influence absorption pathway
- Interact with intestinal based efflux and/or metabolism

Fig from Porter CJH et al., Nature Reviews | Drug Discovery, 2007, 6:231-248
Two Important Factors For Developing LBDDS Are...

Dispersion

Digestion

Fig from Porter CJH et al., Nature Reviews | Drug Discovery, 2007, 6:231-248
The Basic Elements of a Successful LBDDS Development Program
Basic Elements of a LBDDS Development Program

Preformulation Studies
- Solubility screening
- Compatibility studies
- Digestion studies: rate and extent; API solubility in pre-digested excipients
- Permeation studies
- Analytical methods development to support preformulation studies

Formulation Development Studies
- Formulation dispersion: phase diagrams for determining phase behavior as a function of formula composition; dispersion (droplet size) characterization and stability
- Formulation digestion: rate and extent; API solubility in pre-digested formulations
- Analytical methods development to support formulation development studies
Preformulation Studies and Analytical Tools for the Rationale Selection of Lipid Excipients
Solubility Screening: Typical Program

Identify Lipid Excipients That Solubilize The Desired Dose in the Minimum Volume of Excipients for Encapsulation

- Determine single excipient solubility (but most likely multiple excipients will provide the greatest solubility)
- Based on the drug compound’s structure, screen a range of excipients
 - Various of chemical classes
 - Various lipophilicity/hydrophilicity profiles
- Determination of the dissolved fraction of API at up to 3 time points
 - Visual or quantitative measurement of solubility (UHPLC)
- Analysis of the solid-state (XRPD or DSC with Raman spectroscopy)
Solubility Screening: Solubility Prediction Software

Benefits
- Predict solubility of BCS Class II compounds in pharmaceutical excipients with no API needed
- To speed-up solubility screening during pre-formulation activities

Types
- Computing process based on quantum chemistry theory
 - Input: API or excipient (molecule chemical structure)
 - Database
 - Output: predicted solubility values
- Computing process based on thermodynamic theory
 - Input: API (ΔH_m, T_m, solubility values); excipient (VLE or LLE data)
 - Database
 - Output: predicted solubility values
Solubility Screening: High-Content versus High-Throughput Approaches

<table>
<thead>
<tr>
<th>Application</th>
<th>High-Content Screening Platform</th>
<th>High-Throughput Screening Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Product/material understanding</td>
<td>• Relative assessments</td>
</tr>
<tr>
<td></td>
<td>• Performance assessment</td>
<td>• Rank-ordering</td>
</tr>
<tr>
<td></td>
<td>• Modeling</td>
<td>• Structure-activity relationships</td>
</tr>
<tr>
<td>Attributes</td>
<td>• Refined phase-separation techniques</td>
<td>• Generic phase-separation techniques</td>
</tr>
<tr>
<td></td>
<td>• Material-specific analyses (e.g., quantitation)</td>
<td>• Generic analyses (e.g., semi-quantitative)</td>
</tr>
<tr>
<td></td>
<td>• Precise data</td>
<td>• Closely estimated data</td>
</tr>
<tr>
<td></td>
<td>• Generally slower</td>
<td>• Faster</td>
</tr>
<tr>
<td></td>
<td>• Semi-automated</td>
<td>• Highly automated</td>
</tr>
</tbody>
</table>
Solubility Screening: Example of High-Content Approach

• Tier I Solubility Screening
 – Select 25 vehicles (chemical classes and HLB)
 – Dispense API and vehicle in 1:100 ratio to achieve ~10 mg per gram of vehicle
 – Incubate/mix at 25°C (liquid vehicles) and 50°C (semi-solid vehicles) for 48 hours
 – Examine samples visually and by polarized light microscopy for the presence and absence of API crystals

• Tier II Solubility Screening
 – Select vehicles from Tier I screening that showed absence of API crystals
 – Prepare suspensions of API in the vehicles and incubate/mix at 25°C (liquid vehicles) and 50°C (semi-solid vehicles) for 48 hours
 – Isolate the suspensions/solutions using a Millipore™ Ultrafree-MC Centrifugal Filter Unit (Pore size: 22um)
 – Analyze the solution by UHPLC for API solubility and the residual solid by XRPD
API-Excipient Compatibility Studies: Basic Design

- Weigh binary mixtures of API and each excipient (as well as neat API and excipients) into capped and uncapped glass vials in duplicate.
- Prepare a stock solution/suspension of each binary mixture at desired API concentration (1:1 or excipient ratio to API in formulation) and aliquot into separate vials for each time point.
- Store vials at 40°C, 40°C/75%RH and 60°C for a period of up to 4 weeks.
- Monitor for signs of physical instability and analyze samples for assay/related substances by UHPLC/MS to characterize/elucidate degradation products/pathways.

4-Week Excipient Compatibility Study

<table>
<thead>
<tr>
<th>Storage Condition</th>
<th>Interval (Weeks)</th>
<th>Initial</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td></td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40°C</td>
<td></td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40°C/75%RH</td>
<td></td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>60°C</td>
<td></td>
<td>-</td>
<td>(X)</td>
<td>(X)</td>
<td>(X)</td>
</tr>
</tbody>
</table>

X = appearance and assay/related substances
() = optional testing
Digestion Studies: *In-Vitro* Measurement Using pH Stat Methods

- Pancreatic lipase catalyses the lipolysis (also termed hydrolysis or de-esterification) of oils, a process that results in the production of fatty acids.

- The rate of fatty acid generation is followed via continuous titration by NaOH with a pH-stat (pH-meter / autoburette / autotitration unit).

$$(1 \text{mole}) \text{TG} \rightarrow (2 \text{moles}) \text{FA} + (1 \text{mole}) \text{MG}$$
Digestion Studies: *In-Vitro* Solubilization in Pre-digested Lipid Excipients

Objective: To Identify Digestible Lipid Excipients That Will Potentially Keep The Drug in Solution *In-Vivo*

- Measure solubility of drug in pre-digested lipid excipients
- Select excipients with greatest “reservoir effect”

![Graph showing solubility of progesterone in pre-digested triglycerides](image)

Solubility of Progesterone in Pre-Digested Triglycerides
Preformulation Studies: Analysis Using UHPLC/MS

Benefits

• UHPLC enables faster and improved chromatography for generation of key solubility or compatibility data
 – Conventional (HPLC/UV) techniques must be modified (mobile phase, gradient, columns) to obtain an analyte-specific response
 – UHPLC systems equipped with multiple mobile phases and columns for screening of mobile phase composition and column properties

• UHPLC/MS allows identification of potential API degradation pathways to establish optimal formulation strategies
 – Technique is specific to API (as opposed to pharma ingredients) provided that ionization conditions are not affected by other ingredients

Improved Chromatography: Analysis Using UHPLC versus HPLC

Elucidation of Degradation Pathways: Analysis Using UHPLC-MS

Improved Timelines: Analysis Using UHPLC-MS

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Standard Approach (HPLC/UV)</th>
<th>Catalent Approach (UHPLC/MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method Evaluation</td>
<td>2 weeks</td>
<td>1 week</td>
</tr>
<tr>
<td>Solubility Screening</td>
<td>2 weeks</td>
<td>1 week</td>
</tr>
<tr>
<td>Compatibility Study Launch</td>
<td>4 days</td>
<td>1.5 days</td>
</tr>
<tr>
<td>Compatibility Study Time Point</td>
<td>4 days</td>
<td>1.5 days</td>
</tr>
<tr>
<td>(Analysis)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Method Validation</td>
<td>6 weeks</td>
<td>3 weeks</td>
</tr>
</tbody>
</table>

Typical timeframes for various components of analytical science.

Examples: Impact of Selecting the Right Lipid Excipients for Desired Formulation Performance
Formulation Digestion Studies: Effects of Different Hydrophilic Surfactants on Lipolysis of a MCT

Triplicate determinations (Coefficient of Variation < 10%)
Formulation Digestion Studies: Effects of Different Lipophilic Surfactants on MCT Lipolysis in the Presence of Cremophor RH40

![Graph showing the effects of different surfactants on MCT lipolysis.](image-url)
Digestion Studies: *In-Vitro* Solubilization in Predigested Lipid Excipients

Objective: To study the impact of non-ionic surfactants digestion on solubilization

![Graph showing concentration of fatty acids titrated (mM) over time (minutes) for different surfactants: Labrasol, Gelucire 44/14, Tween 80, Cremophor EL, and Pluronic L64/Brij 97.](image)

Surfactants comprising glycerides or fatty acid esters (Labrasol, Gelucire 44/14, Cremophor EL, and Tween 80) were susceptible to digestion.

Both ether-based surfactants (Pluronic L64 and Brij 97) were not digestible.

Impact of Non-ionic Surfactants Digestion on Solubilization

SEDDS
70% Surfactant
20% LC lipid
10% EtOH

Drug solubilization on dispersion (t=0) good for all systems

For Tween 80, Cremophor EL, Gelucire and Labrasol formulations digestion reduced solubilization capacity

A MCT is not a MCT is not a MCT

Composition of Fatty Acids

<table>
<thead>
<tr>
<th></th>
<th>MCT (A) Specifications</th>
<th>MCT (B) Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caproic Acid (C6)</td>
<td>NMT 2.0%</td>
<td>NMT 3.0%</td>
</tr>
<tr>
<td>Caprylic Acid (C8)</td>
<td>50-80%</td>
<td>50-65%</td>
</tr>
<tr>
<td>Capric Acid (C10)</td>
<td>20-50%</td>
<td>35-50%</td>
</tr>
<tr>
<td>Lauric Acid (C12)</td>
<td>NMT 3.0%</td>
<td>NMT 3.0%</td>
</tr>
<tr>
<td>Myristic Acid (C14)</td>
<td>NMT 1.0%</td>
<td>NMT 1.0%</td>
</tr>
</tbody>
</table>

LBDDS formulated with MCT (B) was not bioequivalent to LBDDS formulated with MCT (A)!
Formulation Development Studies and Analytical Tools for LBDDS
Typical Formulation Development Plan for LBDDS

Preformulation Studies

• Characterization of the poorly water soluble API and choice of excipients based on solubility screening and compatibility studies

Formulation Development Studies

• Pseudo ternary diagrams on placebo
• Lipolysis profiles on placebo
• Select candidate prototype formulations based on placebo phase diagrams and lipolysis properties
• Dispersion and digestion studies on selected active prototype formulations
 – PSD (DLS or Light Diffusion) stability
 – Rate and extent of digestion, API solubility in pre-digested formulation
The Usefulness of Ternary Phase Diagrams in the Development of LBDDS...

- To identify formulations suitable for SEDDS or SMEDDS (physical state under infinite dilution)
- To optimize proportions of different components
- To rapidly screen a wide range of excipients
What is a Pseudo Ternary Diagram?

Graphic overview of the physical state of an emulsion as function of the ratio of oil, surfactant/cosurfactant and water

- Increasing amount of Surfactant / Cosurfactant
- Increasing amount of Oil
- Increasing amount of Water
How to Read a Pseudo Ternary Diagram?

From each of the initial compositions (start points), water is added drop by drop and different physical states are reported with the dilution.

Transition from a state to another state corresponds to a unique composition of Oil, C/CoS and Water.
What are the Different Physical States?

Upon dilution in aqueous, initial formulation can undergo five (5) different physical states:

- **Transparent**: finest W/O dispersion (thermodynamically stable)
- **Translucent**: very fine W/O dispersion (thermodynamically stable)
- **Bluish**: fine W/O dispersion (thermodynamically stable)
- **Cloudy**: opaque (slightly grey) O/W dispersion (thermodynamically unstable)
- **Milky**: opaque (white) O/W dispersion (thermodynamically unstable)
What is the Result?

Graphic overview of the different physical states occurring upon dilution

Red: Transparent
Orange: Translucent
Blue: Bluish
Grey: Cloudy
Black: Milky
Formulation Dispersion Studies: Phase Diagrams
Formulation Digestion & Digestion Studies: Phase Diagrams/Lipolysis

Key:
- Oil Ratio: 0.0
- Oil Ratio: 0.1
- Oil Ratio: 0.2
- Oil Ratio: 0.3
- Oil Ratio: 0.4
- Oil Ratio: 0.5
- Oil Ratio: 0.6
- Oil Ratio: 0.7
- Oil Ratio: 0.8
- Oil Ratio: 0.9
- Oil Ratio: 1.0

nFe/g (log)

Time (min)
Droplet Size Characterization Methods for LBDDS

- Optical microscopy with image analysis
- Electron microscopy
- **Laser light scattering**
- **Photon correlation spectroscopy**
- Coulter/electric sensing
- In-process systems, e.g. Lasentec
Formulation Dispersion Studies: Droplet Size Stability

Droplet Size Assessment using Photon Correlation Spectroscopy @ 37°C in S.I.F.

- **PSD (Initial)**: Mean Particle Diameter ~ 50nm
- **PSD (after 19 hours)**: Mean Particle Diameter ~ 60nm
Examples: Effective Development of LBDDS Formulations for Enhanced Bioavailability
The Neoral® Story: Cyclosporin A

API Physical-Chemical Properties
- High molecular weight
- Hydrophobic
- Poorly soluble in G.I. fluids

API Pharmacokinetic Properties
- Poor and variable absorption

Initially Introduced as a Lipid-based Formulation in a Softgel - Sandimmune®

Reformulated as a Microemulsion Preconcentrate in a Softgel - Neoral®
Pharmacokinetic Profiles for Sandimmune® and Neoral® Microemulsion Preconcentrate

12 Fasting Human Volunteers; 150mg Dose
Effect of Food Intake on the Absorption of Sandimmun® and Neoral® Microemulsion Preconcentrate

AUC (µL-1 h)

- **Fed**
- **Fasted**

Neoral® is less affected by food intake
Cinnarizine

Physiochemical Properties
- High molecular weight (368.5)
- Hydrophobic drug
- Poor solubility in aqueous GI fluids (< 1 µg/ml in water)

Pharmacokinetic Properties
- Poorly absorbed
- Dose 30 mg
- Dissolution rate limited (BCS Class II)
Solubility of Cinnarizine in Pre-Digested Lipolytic Products

Solubility (µg/ml)

- **pH 7.5 Buffer**
- **Bile Salt Micelles**
- **MCLP**
- **LCLP**

The solubility of Cinnarizine is highest in LCLP compared to other conditions.
Comparative Rates of Lipolysis for Two Lipid-Based Solution Formulations Containing Cinnarazine
Plasma Concentration Versus Time Curves for 3 Formulations of Cinnarizine in the Dog (n=6)

Formulations:
- Softgel: LCT Lipolysing AUC(0-24hr) 665 ng.h/ml
- Softgel: Non-Lipolysing AUC(0-24hr) 451 ng.h/ml
- Tablet: AUC(0-24hr) 406 ng.h/ml
Progesterone

Physiochemical Properties
- High molecular weight (314.5)
- Hydrophobic drug
- Poor solubility in aqueous GI fluids (< 0.1 mg/ml in water)

Pharmacokinetic Properties
- Poorly absorbed
- Rapidly metabolised by the liver
- Slow dissolution and absorption from oral suspension provides steady flow of drug to liver where it is extensively metabolised
Solubility of Progesterone in Pre-Digested Triglycerides and Lipolyzed Formulation

Formulation composed of 1g triglyceride / lipophilic surfactant / hydrophilic surfactant / co-solvent
Progesterone Relative Bioavailability from a Lipolyzing Solution and a Suspension Formulation

Serum Concentration versus Time Curves following Single Dose Administration of 200mg Progesterone in 12 Healthy Post-Menopausal Volunteers

![Graph showing serum progesterone levels over time for Lipolyzing Solution Formulation and Commercial Suspension Formulation.](image-url)
Development Approach for Timely, Effective LBDDS Formulations for POC Studies in Humans
NCE Compound Y

Physiochemical Properties
- High molecular weight (~400)
- Hydrophobic drug
- cLog P > 8
- Drug is sensitive to oxidation

Pharmacokinetic Properties
- Drug with a very low Papp
- Drug belongs to BCS Class IV
- Active transport identified
Competing Formulation

- Liquid Filled Hard Shell Formulation, Semi-Solid SEDDS

 - Long chain fatty acid
 - Glycerol monoester of long chain fatty acid
 - Monoester of sorbitan and long chain fatty acid

 Classified as Alternative Formulation Strategy (Pouton, 2008), "Pre-Digested" approach

- Maximum strength was around 100 mg (micronized drug)
- Short shelf life assigned due to degradation
- Limited absorption
- Anticipate difficulties in scale-up & in dissolution method development
Solubility of NCE Compound Y in Pre-Digested Lipolytic Products

Is the digestion process likely to increase solubility?

- Reservoir effect in LCLP’s and MCLP’s

Solutions in LCT’s and MCT’s have proven acceptable stability
Animal Studies

PK study in rats

- Dispersion in MCT’s (#1)
- Dispersion in LCT’s (#2)
- LFHC pre-emulsified

<table>
<thead>
<tr>
<th>Formula</th>
<th>T max</th>
<th>Cmax (µM)</th>
<th>AUC 0-24h (µg.h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFHC emulsified</td>
<td>8 h</td>
<td>1.53</td>
<td>8.6</td>
</tr>
<tr>
<td>Dispersion in MCTs</td>
<td>6 h</td>
<td>1.12</td>
<td>5</td>
</tr>
<tr>
<td>Dispersion in LCTs</td>
<td>4 h</td>
<td>2.05</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Potential for a LCT-based formulation
Selected Formulation

- Development of a drug substance suspension in LCT’s based on drug solubility in LCLP’s
- 45% drug loading
- Utilized milled drug substance
- Selected formulation is stable for 36 months
- Encapsulation into a softgel with FIH studies within 4 months
Pharmacokinetic Study in Humans

Comparative pharmacokinetic study for a LFHC versus a Softgel on 24 subjects in the fed state – 2.3 fold bioavailability improvement

Mean curves

Concentrations expressed as ng/mL

Time

Catalent Pharma Solutions data

58
Summary

- There is a growing interest in LBDDS and their ability to enhance the bioavailability of poorly water soluble drug compounds

- Specialized analytical & formulation tools/methods are needed for the effective development and assessment of LBDDS

- This begins with the application of these tools/methods during preformulation studies for the rationale selection of lipid excipients that have the right performance characteristics to maintain the drug in a solubilized state \textit{in-vivo}

- It continues with the application of in-vitro tools/methods that are predictive of in-vivo performance for the evaluation and screening of LBDDS formulations

- Finally, the appropriate application/integration of analytical & formulation tools/methods and activities, along with the assumption of manageable risks, can lead to the rapid, effective development of LBDDS for human studies
Acknowledgements

Julien Meissonnier
Thomas Pointeaux
Etienne Rogeau
Nathalie Sicre
David Igo, Ph.D.
Irena McGuffy
Keith Horspool, Ph.D.